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Abstract---Experimental observation has shown that a slightly tilted sharp interface between two convection 
layers in double-diffusive natural convection migrates perpetually upward gradually with time. This move- 
ment of an interface cannot be explained by a simple mathematical model of constant physical properties. 
The present paper studies the numerical analyses of two-layer convection with the temperature dependence 
of the properties of the fluid. The perpetual upward migration of an interface was found to be promoted 
mainly by the temperature dependence of the volumetric coefficient of thermal expansion and also by that 
of the kinematic viscosity. However, the diffusion coefficient was independent of the migration. The upward 
migration of an interface appears to be caused by the difference between the intensity of etching due to the 

flow along the hot wall in the lower layer and that along the cold wall in the upper layer. 

1. INTRODUCTION 

Natural convection in which the buoyant forces are 
due both to temperature and concentration gradients 
is generally referred to as double-diffusive convection. 
In double-diffusive convection, multi-layered roll cells 
are mostly formed and then slightly tilted sharp inter- 
faces are obserw~d. The solute in the double-diffusive 
natural convection is transferred generally from below 
to above the interfaces, but thermal energy is trans- 
ferred either vertically or laterally depending on the 
boundary conditions. The system heated from below 
was first studied by oceanographers, and the first 
example in the lkerature appears to be the experiment 
of Turner and Stommel [1]. Turner and co-workers 
developed the study of double-diffusive convection as 
described in a number of reviews [2-4]. The system 
heated laterally produces stable multi-layered con- 
vection [5, 6]. For example, when a solution having a 
concentration gradient along the gravitational direc- 
tion is heated from one vertical side wall and cooled 
from an opposing wall, multi-layered roll cells are 
formed and slightly tilted sharp interfaces are 
observed. Detailed observation of the interfaces sug- 
gests that there is a migration of interfaces between 
two convection layers as described in our previous 

tAuthor to whom correspondence should be addressed. 

paper [7]. All interfaces have a tendency to migrate 
perpetually upward gradually with time, but the cor- 
responding numerical analyses for multi-layered con- 
vection failed to simulate this migration of the inter- 
faces. This curious upward migration is studied by 
the present numerical model for two-layer convection 
with the temperature dependence of the physical 
properties of the fluid. 

A simple model for double-diffusive natural con- 
vection is a two-layer convection as shown in Fig. 1. 
It consists of water (upper layer) and an aqueous 
solution (lower layer). Both layers are heated from 
one side and cooled from the opposite side, and con- 
vection starts in each layer. The volumes of the upper 
and lower layers are the same at the start of convec- 
tion. The system is symmetric with respect to a central 
vertical plane at X = 0.25, since the top of the system 
is a free surface and the bottom is a fixed wall. Simi- 
larly to the case of multi-layered convection, the cor- 
responding simple numerical analyses for this two- 
layer system failed to simulate the migration of an 
interface [8, 9]. However, the experimental obser- 
vation represented the unsymmetrical upward 
migration of an interface as time proceeds after a step 
heating and cooling of the vertical walls, as shown in 
Fig. 2 for a system of KC1 solution and water [9, 10]. 
The present paper tries to simulate this migration of 
the interface with mathematical model equations as 
described below. 
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NOMENCLATURE 

A aspect ratio, 2H/B 
B horizontal width of  a solution layer 
C dimensionless concentration, 

(c-co)/Acmax 
c concentration 
Cmax initial maximum concentration (initial 

concentration of  a lower layer) 
Cm~n initial minimum concentration (initial 

concentration of  an upper layer) 

CO (Cmax -}- Cmin)/2 
D diffusion coefficient 
d dimensionless density (specific gravity) 
g acceleration due to gravity 
H initial height of  the upper layer or the 

lower layer 
Le Lewis number, x/D 
N buoyancy ratio, flAc.~ax/(c~ATmax) 
Nu~o~ local Nusselt number 
Pr Prandtl number,  v/x 
Ra Rayleigh number, ffaATmaxH3 /(xv) 
T temperature 
T~ola temperature on the cold wall 
Thot temperature on the hot  wall 

To (Thot + T~old)/2 
t time 
U dimensionless velocity, uH/x 

u velocity in the x direction 
V dimensionless velocity, vH/r¢ 
Vmax maximum V at Y = 0.5 or 1.5 
v velocity in the y direction 
X dimensionless coordinate, x /H  
x horizontal coordinate 
Y dimensionless coordinate, y /H  
y vertical coordinate. 

Greek symbols 
c~ volumetric coefficient of  expansion 

with temperature 
fl volumetric coefficient of  expansion 

with concentration 

ACmax Cmax-- Cmi n 
ATmax Thot-- Tcold 
Az dimensionless time step 

dimensionless vorticity 
0 dimensionless temperature, 

( T -  To)/ATma x 
x thermal diffusivity 
v kinematic viscosity 
z dimensionless time 
¢ dimensionless stream-function 

( U  = aqJ/~r, v = -a~laX) 
09 vorticity. 

8U/SY=O V=O 
x caO/OY=O OC/cSY=O 

v 0 0.5 

U=V=O U=V=O 
/C0. 5 @-0.5 0 : -0 .  5 

8X :0 c:o, 5 6C 

<:30/c~Y=O C~C/SY--O 
Fig. 1. Schematic illustration of two-layer convection and 
boundary conditions. 1: buoyancy due to temperature 

difference, 2 : buoyancy due to concentration difference. 

2. ANALYSIS 

2.1. Mathematical model 
The basic equations [1 1] to describe double-diffusive 

natural convection consist of  the stream-function 
equation, the vorticity equation, the energy equation 
and the concentration equation as follows in dimen- 
sionless forms : 

OV OU 
( = O X  OF - V 2 6  (1) 

--Oz + U ~ +  V ~ -  PrRa k + N  +PrVZ~ 

(2) 

~0 ~30 V 00 --Oz + U~--~ + ~ =  V20 (3) 

OC OC OC 
+ Uff~ + V ~  = VzC/Le. ' (4) 

Dimensionless parameters Pr, Ra, Le, N and A are 
defined as follows. 

V ff~A Tmax H3 
Pr = - Ra - 

K KV 

B 2H N = -Acmax A = - - .  
c~A Tmax B 

/£ 
Le = --  

D 

(5) 
Here, the dimensionless variables are defined as 
follows. 

X = x /H  Y =  y / H  U = uH/x 

V = v H / x  z=t~c/H 2 (=ooH2/~c 

0 = (T--To)/ATmax C = (c--eo)/Ac . . . .  (6) 

2.2. Temperature dependence o f  fluid properties 
The properties of  fluid to affect the double-diffusive 

natural convection are volumetric coefficient of  ther- 
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Fig. 2. Shadowgraphs of  interface between layers. The time is the elapsed time from the start of  heating 
and cooling. The experimental apparatus and conditions are the same as those described in the literature 
[10]. Initiall upper layer: water (8 cm in height); initial lower layer: 10 kg m -3 KCI (8 cm in height); 
heating : 3C °C (left-hand side) ; cooling : 20°C (right-hand side). The above experimental conditions can be 

summarized as follows : Pr = 6.27, Le = 71.8, A = 4, N = 2.74 and Ra = 9.23 × 107. 

mal  e x p a n s i o n  (c~), vo lumetr i c  coeff ic ient  o f  e x p a n s i o n  
wi th  c o n c e n t r a t i o n  (fl), k inemat i c  v i scos i ty  (v), ther-  
mal  di f fus iv i ty  (x)  and d i f fus ion  coeff ic ient  ( D ) ,  in 
w h i c h  ~, v or D d e p e n d  large ly  o n  t emperature  (see 
Fig.  3) but  fl and  r are n o t  so  dependent .  T h e n  it is 
apparent  f rom the def in i t ion  o f  d i m e n s i o n l e s s  par-  
ameters  g iven  in e, q u a t i o n  (5) that  Pr is p r o p o r t i o n a l  
to v, Pr Ra is p r o p o r t i o n a l  to co, N is inverse ly  pro-  
por t iona l  to  e and that  Le is inverse ly  p r o p o r t i o n a l  to 
D.  In Fig.  3 the re lat ion  b e t w e e n  the proper ty  o f  f luid 
and  temperature  is ro u g h ly  l inear for  v and D, but  
s l ight ly  curved  for c~. T h e n  the d imens ion le s s  par-  
ameters  are expre:~sed by  the f o l l o w i n g  e q u a t i o n s  : 

Pr = Pr0(1 + a l  0) (7) 

Pr Ra --= ProRao(1 + a 2 0 + a 3 0 2 )  (8) 

N = N0(1 q-a4Oq-asO2) -1 (9) 

Le = Le0(1 +a60 ) - J .  (10) 

For  example ,  the coefficients for the properties o f  water  
at 25°C (Thor = 30°C and Tcold = 20°C) are as fo l lows:  

aj = - 0 . 2 2 6  

a2 = a4 = 0 .292  

a3 = as = - 0 . 0 8 7  

17/6 = 0 . 2 6 0 .  

Here  the d i f fus ion  coeff ic ient  is a s s u m e d  to be the 
va lue  for  d i luted  KC1 in water .  
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Fig. 3. Temperature dependence of  the properties of  the fluid. 
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Fig. 4. Finite element mesh with 1691 nodes and 3168 

elements. 

2.3. Numerical analysis 
The model  equat ions  were numerical ly solved by 

the finite e lement  me thod  for the two-layer convec- 
tion. The calculat ion of  finite element me thod  was 
carried out  by the same a lgor i thm as tha t  used in 
our  previous paper  [11], except for the t empera ture  
dependence.  Figure 4 shows the finite e lement  meshes 
in which fine meshes are employed in the vicinity of  a 
hor izonta l  central  height (Y = 1). Then  stable numeri-  
cal s imulat ions could be carried out  for the migra t ion  
of  an  interface. The coordinates  of  division are as 
follows : 

164X = 0,2,4, 7, 11,17,23,29,  35,41, 

47, 53, 59, 65, 71, 75, 78, 80, 82 

169Y = 0 ,3 ,6 ,  10, 16 . . . .  (difference = 8) . . . .  

104, 110, 114, 117 . . . .  (difference = 2 ) . , . ,  

221,224, 228,234 . . . .  (difference = 8) . . . .  

322, 328,332,335,338.  

The mesh for the present  computa t ion  is 1691 nodes 
and  3168 elements,  which is finer than  the 1311 node 
and  2448 elements used in the previous s imulat ion of  
the two-layer convect ion [9]. 

The bounda ry  condi t ions  in dimensionless form are 
given as follows (see Fig. 1) : 

a t Y =  0: 

a t Y = 2 :  

a t X =  0: 

a t X =  0.5: 

8U/SY= 0, V =  0,80/0Y= O, OC/OY= 0 

U =  V = 0 , 0 0 / S Y = 0 , 0 C / • Y = 0  

U = V = 0, 0 = 0.5, OC/~X = 0 

U= V= 0,0 = -0 .5 ,0C/OX= O. 

The initial concen t ra t ion  in the system is -I-0.5 in the 
lower layer and  - 0 . 5  in the upper  layer. 

Compu ta t i ons  were carried out  for Pro = 6, 
Leo = 100, A = 4, No = 2 and  Rao = 105. These cor- 
respond roughly to the experimental  values as men-  
t ioned in the capt ion of  Fig. 2, except for the Rayleigh 
number .  The computa t ion  with the Rayleigh n u m b e r  
at  Rao = 1 0  7 in accordance with the experimental  
value did not  converge with the current  element num-  
bers. Stable compu ta t i on  appears  to require much  
finer element sizes, which is not  possible with our  
current  compute r  resources. A l though  the present 
computa t ion  is limited to being 100 times smaller than  
the exper imental  correspondence,  the quali tat ive 
characterist ics are expected to hold even at  higher  
Rayleigh numbers .  In the experiments  with Rayleigh 
n u m b e r  two orders lower it was difficult to keep the 
tempera ture  difference between the hot  and  cold walls 
at  a cons tan t  small  value such as 0.1 K. 

The effect of  the tempera ture  dependence of  fluid 
propert ies  on the migra t ion  was studied for the five 
different cases as follows. 

Case 1 : no  tempera ture  dependence 

al = a 2  = a 3  = a 4  = a s  ~ a  6 ~ 0 .  

Case 2 : t empera ture  dependence of  e, v and  D 

a~ = - 0 . 2 2 6 ,  a 2 = a 4 = 0.292, 

a3 = a5 = --0.087, a 6 = 0.260. 

Case 3 : t empera ture  dependence of  

at = 0 ,  a2 = a 4  = 0.292, 

a 3 = a  5 = --0.087, a 6 = 0 .  

Case 4 : tempera ture  dependence of  v 

al = --0.226, a2 = a4 = 0, a 3 = a 5 = 0 ,  a 6 = 0. 

Case 5 : tempera ture  dependence of  D 

al = 0, a2 = a4 = 0, a3 = a5 = 0, a 6 = 0.260. 

The calculat ions were carr ied out  on  an  H P  Apol lo  
9000 Model  710. 
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3. RESULTS 

3. l. Two-layer convection phenomenon 
Figure 5 shows the instantaneous contours of 

stream function and concentration for the system with 
temperature dependence of e, v and D (case 2). At 
first the contour of stream function gives two roll cells 
of the same size. However, the lower roll cell becomes 
larger gradually with time and then the upper roll cell 
smaller. This characteristic differs from that obtained 
without considering the temperature dependence of 
properties, as described in previous papers [8, 9], 
where the sizes of two roll cells were the same over a 
long period of tirae. The contours of concentration in 
Fig. 5 correspond to those of the stream function. 
Namely the lower layer becomes larger gradually with 
time. The computation was quit at ~ = 2.4 because of 
the change to a s:ingle roll. 

Figure 6 shows the height ( 2 -  Y) of the interface 
at the center of the enclosure (at X = 0.25) vs time. In 
the case of no temperature dependence, the interface 
represented by black circle is at a central height with 
some fluctuation. In the case of the temperature 
dependence of c~, v and D, the interface represented by 
open circles mow~s noticeably upward with time. This 
means that the temperature dependence of the proper- 
ties of fluid is related to the migration of the interface. 
When the temperature dependence of e (black square) 
or v (open triangle) exists, the interface moves upward 
with time and then the interface for ~ moves faster 
than that for v. When the temperature dependence of 
D (open square) exists, the interface is at rest. Actu- 
ally, all physical properties depend on the temperature 
and the transient movement of the interface repre- 
sented by open circles is most plausible in a real 
experiment. 

3.2. Fluid velocity near the walls 
The migration of an interface may be caused by the 

etching due to the flow against the interface. Figure 7 
shows the vertical velocity profiles at Y = 1/2 (mid 
height in an upper layer) and at Y = 3/2 (mid height 
in a lower layer). In the case of no temperature depen- 
dence (case 1), the maximum absolute velocity near 
the hot wall in the lower layer is almost equal to 
that near the cold wall in the upper layer. The small 
difference is becaase of the free upper surface and rigid 
bottom wall. On Lhe other hand, when we consider the 
temperature dependence in ~, v and D (case 2), the 
maximum absolute velocity near the hot wall hitting 
the interface from the lower layer is much higher than 
that near the cold wall in the upper layer hitting the 
interface downward. The flow velocity near the hot 
wall is more vigo:rous than the flow near the cold wall. 
The vigorous flow along the hot wall in the lower layer 
collides with the interface, and similarly that along 
the cold wall in the upper layer also collides with the 
interface. The difference in the inertial force between 
two flows should be a driving force for the migration 
of an interface. Namely the inertial force to hit the 

interface may be more persuasive for the movement 
of the interface : to assess this another graph is pre- 
pared as shown in Fig. 8. The ordinate represents the 
dimensionless inertial force F( = dVZm,x) for case 1 and 
case 2. The dimensionless inertial force was defined 
by the following equation. 

flACmax '~ 2 
F =  dV~ma~ = l -  ~ O + ~ A T m . x N C )  V . . . .  

(11) 

For the case of no temperature dependence of physical 
properties (case 1), the inertial forces at Y = 0.5 and 
1.5 represented by solid lines are almost the same 
magnitude. On the other hand, for the case of tem- 
perature dependence of physical properties (case 2), 
the inertial forces represented by dotted lines give a 
large difference in their magnitude. The maximum 
inertial force at Y = 1.5 and ~ = 0.9 for the upward 
flow along the heated wall towards the interface from 
the lower layer, as shown by a bold dashed line, is 
F = 5946 in contrast to that as shown by a fine dashed 
line, F =  3451, which is at Y=  0.5 and z = 0.9 for 
the downward flow along the cold wall towards the 
interface from the upper layer. This large difference in 
the magnitude in the inertial force of fluid to hit the 
interface could be responsible for the upward move- 
ment of the interface. 

Figure 9 shows a number of instantaneous vertical 
profiles of the local Nusselt number on the hot wall 
for the case of the temperature dependence in c~, v and 
D (case 2). The peaks of local Nusselt number near 
the bottom of the lower layer are higher than those in 
the upper layer; this is due to the difference in the 
boundary condition at the lower plane in each con- 
vection layer and is similar to that with no temperature 
dependence as shown in the previous papers [8, 9]. 
However, the peak in the upper layer moves upward 
and becomes low. This means that the heat transfer 
rate in the upper layer becomes weaker with time than 
that in the lower layer with decrease in the size of the 
upper layer. 

4. CONCLUSIONS 

The migration of an interface for two-layer con- 
vection is successfully computed with the temperature 
dependence of the properties of the fluid. The 
migration of an interface is affected by the tem- 
perature dependence of properties as follows. 

(1) The volumetric coefficient of thermal expansion 
(~) contributes to the fastest upward migration. 

(2) The kinematic viscosity (v) also contributes to 
the upward migration. 

(3) The diffusion coefficient (D) does not con- 
tribute to the migration. 

The migration of an interface is caused by the etch- 
ing rate in the flow along the hot wall in the lower 



3418 K. KAMAKURA and H. OZOE 

i 

r = 0 . 2  0 . 4  0 . 6  0 . 8  I .0 1 .2  
Fig. 5. Instantaneous contours of stream function (upper row), and concentration (lower row) in the case 
of the temperature dependence ofc~, v and D (case 2) for Pro = 6, Leo = 100, A = 4, Rao = 105 and No = 2. 
Iso-concentration lines are drawn by dividing the initial maximum concentration difference into 20 equal 

sections. (Continued opposite.) 
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layer being s t ronger  t han  tha t  a long  the cold wall in 

the u p p e r  layer. 
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